
T. Eymann et al. (Eds.): MATES 2005, LNAI 3550, pp. 165 – 178, 2005.
© Springer-Verlag Berlin Heidelberg 2005

LEADSTO: A Language and Environment
for Analysis of Dynamics by SimulaTiOn

Tibor Bosse1, Catholijn M. Jonker2, Lourens van der Meij1, and Jan Treur1

1 Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{tbosse, lourens, treur}@cs.vu.nl
http://www.cs.vu.nl/~{tbosse, lourens, treur}

2 Nijmegen Institute for Cognition and Information, Division Cognitive Engineering,
Montessorilaan 3, 6525 HR Nijmegen, The Netherlands

C.Jonker@nici.kun.nl

Abstract. This paper presents the language and software environment
LEADSTO that has been developed to model and simulate the dynamics of
Multi-Agent Systems (MAS) in terms of both qualitative and quantitative con-
cepts. The LEADSTO language is a declarative order-sorted temporal language,
extended with quantitative means. Dynamics of MAS can be modelled by
specifying the direct temporal dependencies between state properties in succes-
sive states. Based on the LEADSTO language, a software environment was de-
veloped that performs simulations of LEADSTO specifications, generates simu-
lation traces for further analysis, and constructs visual representations of traces.
The approach proved its value in a number of projects within different domains
of MAS research.

1 Introduction

Two important phases in the development of Multi-Agent Systems are the Design
phase and the Implementation phase. In principle, the result of the Design phase is a
high-level description (a model) of the system to be developed which, when encoded
in some programming language, solves a particular problem. To this end, the problem
is decomposed into modules, of which the functions and interfaces are specified in
detail [10]. Then, the result of the Design phase, the (technical) specification, can
serve as a starting point for the Implementation phase. However, an important prob-
lem is the validation of this specification: can it be proven that the specification shows
the expected behaviour (e.g. as described by requirements) before it is actually im-
plemented? Especially when the specification is given in terms of abstract high-level
concepts this is a non-trivial task.

To contribute to the validation of Multi-Agent System specifications, this paper in-
troduces the language and software environment LEADSTO. LEADSTO can be used
to model the dynamics of systems to be designed, on the basis of highly abstract proc-
ess descriptions. If those dynamics are modelled correctly, the LEADSTO software
environment can use them for simulation of the desired behaviour of the system. Al-
though such simulations are no formal proof, they can contribute to an informal vali-

166 T. Bosse et al.

dation of the specification: by performing a number of simulations, it can be tested
whether the behaviour of the specification is satisfactory. Therefore, LEADSTO may
be an important tool to bridge the gap between the Design and the Implementation
phase.

Generally, in simulations various formats are used to specify basic mechanisms or
causal relations within a process, see e.g., [1], [5], [9]. Depending on the domain of
application such basic mechanisms need to be formulated quantitatively or qualita-
tively. Usually, within a given application explicit boundaries can be given in which
the mechanisms take effect. For example, “from the time of planting an avocado pit, it
takes 4 to 6 weeks for a shoot to appear”.

As mentioned above, in order to simulate a system to be designed, it is important to
model its dynamics. When considering current approaches to modelling dynamics, the
following two classes can be identified: logic-oriented modelling approaches, and
mathematical modelling approaches, usually based on difference or differential equa-
tions. Logic-oriented approaches are good for expressing qualitative relations, but less
suitable for working with quantitative relationships. Mathematical modelling ap-
proaches (e.g., Dynamical Systems Theory [9]), are good for the quantitative rela-
tions, but expressing conceptual, qualitative relationships is very difficult. In this
article, the LEADSTO language (and software environment) is proposed as a lan-
guage combining the specification of qualitative and quantitative relations.

In Section 2, the LEADSTO language is introduced. Section 3 provides examples
from existing case studies in which LEADSTO has been applied. Section 4 describes
the tools that support the LEADSTO modelling environment in detail. In particular,
the LEADSTO Property Editor and the LEADSTO Simulation Tool are discussed.
Section 5 compares the approach to related modelling approaches, and Section 6 is a
conclusion.

2 Modelling Dynamics in LEADSTO

Dynamics can be modelled in different forms. Based on the area within Mathematics
called calculus, the Dynamical Systems Theory (DST) [9] advocates to model dynam-
ics by continuous state variables and changes of their values over time, which is also
assumed continuous. In particular, systems of differential or difference equations are
used. This may work well in applications where the world states can be modelled in a
quantitative manner by real-valued state variables and the world’s dynamics shows
continuous changes in these state variables that can be modelled by mathematical
relationships between real-valued variables.

Not for all applications dynamics can be modelled in a quantitative manner as re-
quired for DST. Sometimes qualitative changes form an essential aspect of the dy-
namics of a process. For example, to model the dynamics of reasoning processes in
Intelligent Agents usually a quantitative approach will not work. In such processes
states are characterised by qualitative state properties, and changes by transitions
between such states. For such applications often qualitative, discrete modelling ap-
proaches are advocated, such as variants of modal temporal logic; e.g., [6]. However,
using such non-quantitative methods, the more precise timing relations are lost too.

 LEADSTO: A Language and Environment for Analysis of Dynamics by SimulaTiOn 167

For the approach used in this paper, it was decided to consider time as continuous,
described by real values, but to allow both quantitative and qualitative state proper-
ties. The approach subsumes approaches based on simulation of differential or differ-
ence equations, and discrete qualitative modelling approaches, but also combines
them. For example, it is possible to model the exact (real-valued) time interval for
which some qualitative property holds. Moreover, the relationships between states
over time are described by either logical or mathematical means, or a combination
thereof. This is explained below in more detail.

Dynamics is considered as evolution of states over time. The notion of state as
used here is characterised on the basis of an ontology defining a set of properties that
do or do not hold at a certain point in time. For a given (order-sorted predicate logic)
ontology Ont, the propositional language signature consisting of all state ground atoms
(or atomic state properties) based on Ont is denoted by APROP(Ont). The state properties
based on a certain ontology Ont are formalised by the propositions that can be made
(using conjunction, negation, disjunction, implication) from the ground atoms. A state
S is an indication of which atomic state properties are true and which are false, i.e., a
mapping S: APROP(Ont) → {true, false}.

To specify simulation models a temporal language has been developed. This lan-
guage (the LEADSTO language) enables one to model direct temporal dependencies
between two state properties in successive states, also called dynamic properties. A
specification of dynamic properties in LEADSTO format has as advantages that it is
executable and that it can often easily be depicted graphically. The format is defined
as follows. Let α and β be state properties of the form ‘conjunction of atoms or nega-
tions of atoms’, and e, f, g, h non-negative real numbers. In the LEADSTO language
the notation α →→e, f, g, h β (also see Figure 1), means:

If state property α holds for a certain time interval with duration g, then after some delay
(between e and f) state property β will hold for a certain time interval of length h.

α
β

t1

e

g h

t2

time

f
t0

Fig. 1. The timing relationships

An example dynamic property that uses the LEADSTO format defined above is the
following: “observes(agent_A, food_present) →→ 2, 3, 1, 1.5 belief(agent_A, food_present)”. In-
formally, this example expresses the fact that, if agent A observes that food is present
during 1 time unit, then after a delay between 2 and 3 time units, agent A will believe
that food is present during 1.5 time units. In addition, within the LEADSTO language
it is possible to use sorts, variables over sorts, real numbers, and mathematical opera-
tions, such as in “has_value(x, v) →→ e, f, g, h has_value(x, v*0.25)”.

168 T. Bosse et al.

Next, a trace or trajectory γ over a state ontology Ont is a time-indexed sequence of
states over Ont (where the time frame is formalised by the real numbers). A
LEADSTO expression α →→e, f, g, h β, holds for a trace γ if:

∀t1: [∀t [t1–g ≤ t < t1 ⇒ α holds in γ at time t] ⇒ ∃d [e ≤ d ≤ f & ∀t' [t1+d ≤ t' < t1+d+h ⇒ β holds in γ
at time t']

An important use of the LEADSTO language is as a specification language for
simulation models. As indicated above, on the one hand LEADSTO expressions can
be considered as logical expressions with a declarative, temporal semantics, showing
what it means that they hold in a given trace. On the other hand they can be used to
specify basic mechanisms of a process and to generate traces, similar to Executable
Temporal Logic (cf. [1]).

Finally, the LEADSTO format can be graphically depicted in a causal graph-like
format, such as in Figure 2. Here, state properties are indicated by circles and
LEADSTO relationships by arrows. An arc denotes a conjunction between state prop-
erties. Agents are indicated by dotted boxes. Circles that are depicted within an agent
denote its internal (mental) state properties. Circles that are depicted on the left or
right border of an agent denote, respectively, its input and output state properties, and
circles that are depicted outside an agent denote state properties of the external world.
Notice that this simple form leaves out the timing parameters e, f, g, h. A more detailed
form can be obtained by placing the timing parameters in the picture as labels for the
arrows. For more details about the LEADSTO language, see Section 4.

Fig. 2. Example of a graphical representation of two LEADSTO properties

3 Applications

The LEADSTO environment has been applied in a number of research projects in
different domains. In this section, an example LEADSTO specification is given for a
specific domain: a Multi-Agent System for ant behaviour, adopted from [3]. The
world in which the ants live is described by a labeled graph as depicted in Figure 3.
Locations are indicated by A, B,…, and edges by E1, E2,… The ants move from
location to location via edges; while passing an edge, pheromones are dropped. The
objective of the ants is to find food and bring this back to their nest. In this example
there is only one nest (at location A) and one food source (at location F).

food_present

observes(agent_A,
food_present)

no_enemies

observes(agent_A,
no_enemies)

performs(agent_A, eat_food)

to_be_performed
(agent_A, eat_food)

belief(agent_A, no_enemies)

belief(agent_A, food_present)

 LEADSTO: A Language and Environment for Analysis of Dynamics by SimulaTiOn 169

Fig. 3. An ants world

In [3], the dynamics of this system are formalised in LEADSTO, and some simula-
tions are shown for different situations. A number of LEADSTO expressions that have
been used for the simulation are shown in Box 1. For the complete specification, see [3].

In Figure 4 an example of a resulting simulation trace is shown. The upper part of
the figure shows qualitative information; the lower part shows quantitative informa-
tion. Time is on the horizontal axis. In the upper part, the state properties are on the
vertical axis. Here, a dark box on top of the line indicates that the property is true
during that time period, and a lighter box below the line indicates that the property is
false. For example, the state property to_be_performed(ant2, pick_up_food) is true from
time point 20 to 21. Because of space limitations, only a selection of important state
properties was depicted. In the lower part, different instantiations of state property
pheromones_at_E1(X) are shown, with different (real) values for X. For example, from
time point 1 to 7 the amount of pheromones on E1 is 0.0.

Box 1. Example LEADSTO specification

LP5 (Selection of Edge)
This property models (part of) the edge selection mechanism of the ants. It expresses that, when an

ant a observes that it is at location l coming from edge e0, and there are two other edges connected to

that location, then the ant goes to the edge with the highest amount of pheromones. Formalisation:
observes(a, is_at_location_from(l, e0)) and neighbours(l, 3) and connected_to_via(l, l1, e1) and observes(a, phero-

mones_at(e1, i1)) and connected_to_via(l, l2, e2) and observes(a, pheromones_at(e2, i2)) and e0 ≠ e1 and e0 ≠ e2 and e1

≠ e2 and i1 > i2 →→0,0,1,1 to_be_performed(a, go_to_edge_from_to(e1, l1))

LP9 (Dropping of Pheromones)
This property expresses that, if an ant observes that it is at an edge e from a location l to a location l1,

then it will drop pheromones at this edge e. Formalisation:

observes(a, is_at_edge_from_to(e, l, l1)) →→0,0,1,1 to_be_performed(a, drop_pheromones_at_edge_from(e, l))

LP13 (Increment of Pheromones)
This property models (part of) the increment of the number of pheromones at an edge as a result of

ants dropping pheromones. It expresses that, if an ant drops pheromones at edge e, and no other ants

drop pheromones at this edge, then the new number of pheromones at e becomes i*decay+incr. Here,

i is the old number of pheromones, decay is the decay factor, and incr is the amount of pheromones

dropped. Formalisation:
to_be_performed(a1, drop_pheromones_at_edge_from(e, l1)) and ∀l2 not to_be_performed(a2,

drop_pheromones_at_edge_from(e, l2)) and ∀l3 not to_be_performed(a3, drop_pheromones_at_edge_from(e, l3)) and a1

≠ a2 and a1 ≠ a3 and a2 ≠ a3 and pheromones_at(e, i) →→0,0,1,1 pheromones_at(e, i*decay+incr)

e6

e9

e7

e10

e8

e5

e4e3e2

e1

A

B C D

F

 E

 H G

170 T. Bosse et al.

Although this picture provides a very simple example (involving only three ants), it
demonstrates the power of LEADSTO to combine (real-valued) quantitative concepts
with (conceptual) qualitative concepts.

Fig. 4. Example simulation trace

Thus, Figure 4 shows an easy to read (important for the communication with the
domain expert), compact, and executable representation of an informal model for ant
behaviour. Moreover, the example demonstrates the power of conceptual modelling
based on highly abstract process descriptions. In less than 3 pages of code, the global
dynamics of ant behaviour are so well defined that the specification actually runs. The
specification took only a couple of days to construct, making the LEADSTO approach
valuable for proof-of-concept simulations, thus important for Agent-Oriented Soft-
ware Engineering.

Finally, note that the ant example does not fully exploit the power of to use real-
valued time parameters (in fact, most of the rules use the values 0,0,1,1 for the pa-
rameters e, f, g, h, see Box 1). Nevertheless, in a number of other domains the use of
real-valued time parameters turned out to be beneficial, since it allows for more real-
istic simulations of dynamic processes. An example domain where this was the case,
is the domain of adaptive agents based on classical conditioning, see [2].

4 Tools

In this section, the LEADSTO software environment is presented. Basically, this
environment consists of two programs: the Property Editor (a graphical editor for
constructing and editing LEADSTO specifications) and the Simulation Tool (for per-
forming simulations of LEADSTO specifications, generating data-files containing
traces for further analysis, and showing traces). Apart from the LEADSTO language
constructs introduced in Section 2 the LEADSTO software has a number of other

 LEADSTO: A Language and Environment for Analysis of Dynamics by SimulaTiOn 171

language constructs. Section 4.1 discusses some details. Next, Section 4.2 introduces
the Property Editor and Section 4.3 deals with the Simulation Tool. Section 4.4 de-
scribes the algorithm used to generate simulations. Finally, Section 4.5 provides some
implementation details and discusses possible improvements for the future.

4.1 Details of the LEADSTO Language

There are various representations of LEADSTO specifications. A graphical represen-
tation is shown in Section 4.2 when discussing the Editor. In this section all language
constructs are discussed using a formal representation, based on the way specifica-
tions are stored.

Variables. The language uses typed variables in various constructs. A variable is
represented as <Var-Name>:<Sort>.

Sorts. Sorts may be defined as a set of instances that may be specified: sortdef(<Sort-
Name>, [<Term>,…]). There are also built-in sorts such as integer, real, and ranges of
integers represented as for example between(2,10).

Atoms. Atoms may be terms built up from names with argument lists where each
argument must be a term or a variable, for example: belief(x:AGENT, food_present).

LEADSTO rules. LEADSTO rules are introduced in Section 2. They are represented
as:

leadsto([<Vars>,] <Antecedent-Formula>, <Consequent-Formula>, <Delay>, where

<Delay> := efgh(<E-Range>,<F-Range>, <G-Range>,<H-Range>))
1

<Vars> := “[“ <Variable>,... “]”

For example, α →→0, 0, 1, 1 β is represented as leadsto(alfa, beta, efgh(0,0,1,1)). Variables
occurring in LEADSTO rules must be explicitly declared as <Variable> entries.

Formulae. LEADSTO rules contain formulae. The current implementation allows
conjunctions and universal quantification over typed variables. Some variables are
global, encompassing the whole rule. Other - local - variables are part of universal
quantification of some conjunction. The first kind of variables may be of infinite
types. Currently, local variables must be of finite types. Some of these restrictions –
such as on not allowing disjunction – will be removed in a next version. This will
have no effect on the performance of the algorithm discussed in Section 4.4, but will
make the details of the algorithm more complex. Other restrictions with respect to
variables of infinite type will remain.

Time/Range. Time and Range values occurring in LEADSTO rules and interval con-
structs may be any number or expression evaluating to a number.

Constants. Constants may be defined using the following construct: constant(<Name>,
<Value>). A constant(C1, a(1)) entry in a specification will lead to C1 being substituted
by a(1) everywhere in the specification.

Intervals. During simulation, some atom values will be derived from LEADSTO
rules. Others are not defined by rules but represent constant values of atoms over a
certain time range. They are expressed as: interval([<Vars>,]<Range>,<LiteralConjunction>).

1 The reason for grouping the delay is to make it easier to use delay constants.

172 T. Bosse et al.

Periodically reoccurring constant values are represented as: peri-
odic([<Vars>,]<Range>,<Period>,<LiteralConjunction>), where

<Range> := range(<Start-Time>,<End-Time>)
<Vars> := “[“ <Variable>,... “]”
<Period> : an expression or constant or variable representing a number.
<LiteralConjunction> := <Literal> { and <Literal> }*
<Literal> := <Atom> | not <Atom>

For example, an entry interval([X:between(1,2)], range(10,20), a(X)) makes a(1) and a(2)
true in the time range (10,20). Likewise, an entry periodic(P, range(0,1), 10) makes P
true in time ranges (0,1), (10,11), (20,21), and so on.

Simulation Range. The time range over which the simulation must be run is ex-
pressed by means of the constructs start_time(<Time>) and end_time(<Time>).

Visualisation of Traces. The construct display(<Tag-Name>, <Property>) is used to spec-
ify details of how to display the traces. The <Tag-Name> argument makes it possible to
define multiple views of a trace. The active view may be specified from within the
User Interface of the Simulation Tool. A number of properties may be specified, for
showing or hiding certain atoms, for sorting atoms, for grouping atoms into a graph,
and so on.

4.2 Property Editor

The Property Editor provides a user-friendly way of building and editing LEADSTO
specifications. It was designed in particular for laymen and students. The tool has
been used successfully by students with no computer science background and by
users with little computer experience. By means of graphical manipulation and filling

Fig. 5. The LEADSTO Property Editor

 LEADSTO: A Language and Environment for Analysis of Dynamics by SimulaTiOn 173

in of forms a LEADSTO specification may be constructed. The end result is a saved
LEADSTO specification file, containing entries discussed in section 4.1. Figure 5
gives an example of how LEADSTO specifications are presented and may be edited
with the Property Editor. This screenshot corresponds to (part of) the specification
given in Box 1.

4.3 Simulation Tool

Figure 6 gives an overview of the Simulation Tool and its interaction with the
LEADSTO Property Editor.

Fig. 6. Simulation Tool Architecture

The bold rectangular borders define the separate tools. The lines with arrows repre-
sent data transport; the dashed arrows represent control. The Property Editor is used
to generate and store LEADSTO specification files. The Simulation Tool loads these
specification files. The overall control of the Simulation Tool is handled by the Con-
trol-GUI component. The Simulation Tool can perform the following activities:

• Loading LEADSTO specifications, performing a simulation and displaying the
result.

• Loading and displaying existing traces (without performing simulation).
• Adjusting the visualisation of traces.

Loading and simulating a LEADSTO specification is handled in four steps:

1. The Specification Loader loads the specification.
2. The Intermediate Code Generator initialises the trace situation with values de-

fined by interval and periodic entries in the specification. The LEADSTO rules

 Simulation Tool

Trace Files

Internal
Trace Storage

Trace Visualisation
GUI

Trace Loader

Control
GUI

LEADSTO
Property Editor LEADSTO

Specification

LEADSTO Specification Loader

Intermediate Code Generator

Runtime System

174 T. Bosse et al.

are preprocessed: constants are substituted, universal quantifications are ex-
panded and the rules are partially compiled into Prolog calls.

3. The actual simulation is performed by the Runtime System. This is the part that
contains the algorithm, discussed in the next section.

4. At the end of a simulation the result is stored internally by the Internal Trace
Storage component. The result can be saved as a trace file containing the evo-
lution over time of truth values of all atoms occurring in the simulation, and
will be visualised by the Trace Visualisation GUI. In principle, traces are
three-valued, using the truth values true, false, and unknown. Saved trace files
can be inspected later by the simulation tool and can be used by other tools,
e.g., for automated analysis.

Note that visualisation of traces is integrated into the Simulation Tool through the
Trace Visualisation GUI component. It is possible to select what atoms must be
shown and in what order (sorting) etc. Figure 4 is an example of the visualisation of
the result of a simulation.

4.4 Simulation Engine Algorithm

In this section a sketch of the simulation algorithm is given. The core of the semantics
is determined by the LEADSTO rules, for example leadsto(alpha,beta, efgh(e, f, g, h)) or
(in the notation of Section 2) α →→e, f, g, h β. The state properties α, β are internally
normalised. Currently, only state properties that can be simplified to conjunctions of
literals are allowed.

Restrictions on delays
The parameters g and h are time intervals, they must be >= 0. The algorithm allows
only causal rules, e,f >= 0. Allowing e,f < 0 would lead to non-causal behaviour (any
trace situation could have an effect arbitrarily in the past) and an awkward simulation
algorithm. The causal nature of the semantics of LEADSTO rules results in a straight-
forward algorithm: at each time point, a bound part of the past of the trace (the maxi-
mum of all g values of all rules) determines the values of a bound range of the future
trace (the maximum of f + h over all LEADSTO rules).

Outline of the algorithm
First all interval and periodic entries are handled by setting the ranges of atoms accord-
ing to their definition. Next, for the algorithm a time variable HandledTime is intro-
duced: all LEADSTO rules with antecedent range up to HandledTime have fired. The
idea is to propagate HandledTime until HandledTime >= EndTime2 via the following steps:

1. At a certain HandledTime, a value for NextTime is calculated. This will be the
first time in the future after HandledTime that firing of a LEADSTO rule with its
g-interval (see Figure 1) extending past HandledTime may have effect in the
form of some consequent atom set. The time increment will be at least as big as
the minimum of e + h over all LEADSTO rules.

2. An (optional) Closed World Assumption is performed for all selected atoms in
the range (HandledTime, NextTime), i.e., all unknown atoms in this range are made
false.

2 EndTime is the time up to which the simulation should be run.

 LEADSTO: A Language and Environment for Analysis of Dynamics by SimulaTiOn 175

3. All LEADSTO rules are applied for which the range of the antecedent ends be-
fore or overlaps with NextTime.

4. Set HandledTime := NextTime
5. Continue with step 1 until HandledTime >= EndTime

4.5 Implementation Details

The complexity of the current algorithm is proportional to the number of LEADSTO
rules in the specification, to the number of incremental time steps of the algorithm
(which is at most equal to the length of the simulation divided by the minimum of e +
h over all LEADSTO rules) and (at most) to the number of matching antecedent at-
oms per LEADSTO rule (limited by the number of atoms set during the simulation).
A number of optimizations already improve the performance, such as only consider-
ing antecedent atoms that have matching values in the (HandledTime, NextTime) time
range and not considering LEADSTO rules that have been tested to not fire until
some time in the future.

The software was written in SWI-Prolog/XPCE, and consists of approximately
20000 lines of code. The approach for the design and implementation has been to
first focus on a complete implementation that is easily adaptable, with acceptable
performance for the current users. For an impression of the performance: the simula-
tion of Section 3 took two seconds on a regular Personal Computer. More complex
LEADSTO simulations have been created that take about half an hour to run. For
example: one simulation with 170 LEADSTO rules, 2000 time steps, with 15000
atoms set, took 45 minutes.

There is room for further performance improvement of the algorithm. One possi-
ble improvement is to increase the time increment NextTime – HandledTime introduced
in the algorithm above. Global analysis of dependency of LEADSTO rules should
improve the performance, for instance by trying to eliminate simple rules with small
values of their e + h parameters. Furthermore, the LEADSTO language is being ex-
tended with constructs for probabilistic rules, and with constructs for systematically
generating traces of LEADSTO specifications for a range of parameters.

5 Related Work

In the literature, a number of modelling approaches exist that have similarities to the
approach discussed in this paper. Firstly, there is the family of approaches based on
differential or difference equations (see, e.g., [9]). In these approaches, to simulate
processes by mathematical means, difference equations are used, for example, of the
form: ∆x = f(x) ∆t or x(t + ∆t) = x(t) + f(x(t)) ∆t. This can be modelled in the LEADSTO
language as follows (where d is ∆t): has_value(x, v) →→d, d, d, d has_value(x, v+f(v)*d).
This shows how the LEADSTO modelling language subsumes modelling approaches
based on difference equations. In addition to those approaches the LEADSTO lan-
guage allows to express qualitative and logical aspects.

Another modelling approach, Executable Temporal Logic [1], is based on temporal
logic formulae of the form ϕ & χ ⇒ ψ, where ϕ is a past formula, χ a present formula
and ψ a future formula. In comparison to this format, the LEADSTO format is more

176 T. Bosse et al.

expressive in the sense that it allows order-sorted logic for state properties, and allows
one to express quantitative aspects. Moreover, the explicitly expressed timing pa-
rameters go beyond Executable Temporal Logic. On the other hand, within Executa-
ble Temporal Logic it is allowed to refer to different past states at different points in
time, and thus to model more complex relationships over time. For the LEADSTO
language the choice has been made to model only the basic mechanisms of a process
(e.g., the direct causal relations), like in modelling approaches based on difference
equations, and not to model the more complex mechanisms.

The Duration Calculus [11] is a modal logic for describing and reasoning about
the real-time behaviour of dynamic systems, where states change over time and are
represented by functions from time (reals) to the Boolean values (0 and 1). It is an
extension of Interval Temporal Logic [7], but with continuous time, and uses inte-
grated durations of states as interval temporal variables. Assuming finite variability of
state functions (i.e., between any two time points only a finite number of state
changes occurs), the axioms and rules of Duration Calculus constitute a complete
logic (relative to Interval Temporal Logic). A number of interesting tools have been
created around (subsets of) Duration Calculus, see, e.g., [8] for information on model
checking duration calculus formulae. Duration Calculus itself is not directly used for
creating executable models, but environments for executable code exist (e.g., PLC
automata, see [4]) for which a semantics is given in Duration Calculus.

Another family of modelling approaches based on causal relations is the class of
qualitative reasoning techniques (see, e.g., [5]). The main idea of these approaches is
to represent quantitative knowledge in terms of abstract, qualitative concepts. Like the
LEADSTO language, qualitative reasoning can be used to perform simulation. A
difference with LEADSTO is that it is a purely qualitative approach, and that it is less
expressive with respect to temporal and quantitative aspects.

6 Conclusion

This article presents the language and software environment LEADSTO that has been
developed to model and simulate the dynamics of Multi-Agent Systems on the basis
of highly abstract process descriptions. If those dynamics are modelled correctly, the
LEADSTO software environment can use them for simulation of the desired behav-
iour of the system. Although such simulations are no formal proof, they can contrib-
ute to an informal validation of the specification: by performing a number of simula-
tions, it can be tested whether the behaviour of the specification is satisfactory. There-
fore, LEADSTO may be an important tool to bridge the gap between the Design and
the Implementation phase.

Within LEADSTO, dynamics can be modelled in terms of both qualitative and
quantitative concepts. It is, for example, possible to model differential and difference
equations, and to combine those with discrete qualitative modelling approaches. Ex-
isting languages are either not accompanied by a software environment that allows
simulation of the model, or do not allow the combination of both qualitative and
quantitative concepts.

The language LEADSTO is a declarative order-sorted temporal language extended
with quantitative notions (like integer, and real). Time is considered linear, continu-

 LEADSTO: A Language and Environment for Analysis of Dynamics by SimulaTiOn 177

ous, described by real values. Dynamics can be modelled in LEADSTO as evolution
of states over time, i.e., by modelling the direct temporal dependencies between state
properties in successive states. The use of durations in these temporal properties fa-
cilitates the modelling of such temporal dependencies. In principle, accurately model-
ling the dynamics of processes may require the use of a dense notion of time, instead
of the more practiced variants of discrete time. The problem in a dense time frame of
having an infinite number of time points between any two time points is tackled in
LEADSTO by the assumption of “Finite Variability” (see Section 5 and, e.g., [11]).
Furthermore, main advantages of the LEADSTO language are that it is executable and
allows for graphical representation.

The software environment LEADSTO was developed especially for the language.
It features a dedicated Property Editor that proved its value for laymen, students and
expert users. The core component is the Simulation Tool that performs simulations of
LEADSTO specifications, generates simulation traces for further analysis, and visual-
ises the traces.

The approach proved its value in a number of research projects in different do-
mains. It has been used to analyse and simulate behavioural dynamics of agents in
cognitive science (e.g., human reasoning, creation of consciousness, diagnosis of
eating disorders), biology (e.g., cell decision processes, the dynamics of the heart),
social science (e.g., organisation dynamics, incident management), and artificial intel-
ligence (e.g., design processes, ant colony behaviour). LEADSTO is so rich that it can
be used to model phenomena from diverse perspectives. It has, for example, been
used to model cognitive processes from a psychological/BDI perspective and from a
physical/neurological perspective. For more publications about these applications, the
reader is referred to the authors’ homepages.

References

1. Barringer, H., M. Fisher, D. Gabbay, R. Owens, & M. Reynolds (1996). The Imperative
Future: Principles of Executable Temporal Logic, Research Studies Press Ltd. and John
Wiley & Sons.

2. Bosse, T., Jonker, C.M., Los, S.A., Torre, L. van der, and Treur, J., Formalisation and
Analysis of the Temporal Dynamics of Conditioning. In: J.P. Mueller and F. Zambonelli
(eds.), Proc. of the Sixth Int. Workshop on Agent-Oriented Software Engineering,
AOSE'05. To appear, 2005.

3. Bosse, T., Jonker, C.M., Schut, M.C., and Treur, J, Simulation and Analysis of Shared Ex-
tended Mind. In: Davidsson, P., Gasser, L., Logan, B., and Takadama, K. (eds.), Proc. of
the First Joint Workshop on Multi-Agent and Multi-Agent-Based Simulation, MAMABS'04,
2004, pp. 191-200.

4. Dierks, H. PLC-automata: A new class of implementable real-time automata. In M. Ber-
tran and T. Rus, editors, Transformation-Based Reactive Systems Development (ARTS'97),
volume 1231 of Lecture Notes in Computer Science, pages 111-125. Springer-Verlag,
1997.

5. Forbus, K.D. Qualitative process theory. Artificial Intelligence, vol. 24, no. 1-3, 1984, pp.
85-168.

178 T. Bosse et al.

6. Meyer, J.J.Ch., and Treur, J. (volume eds.), Agent-based Defeasible Control in Dynamic
Environments. Series in Defeasible Reasoning and Uncertainty Management Systems (D.
Gabbay and Ph. Smets, series eds.), vol. 7. Kluwer Academic Publishers, 2002.

7. Moszkowski, B., and Manna, Z. Reasoning in Interval Temporal Logic. In Clarke, E., and
Kozen, D., editors, Proceedings of the Workshop on Logics of Programs, volume 164 of
LNCS, pages 371–382, Pittsburgh, PA, June 1983. Springer Verlag.

8. Pandya, P.K., Model checking CTL[DC]. In: Proceedings of TACAS 2001, Genova,
LNCS 2031, Springer-Verlag, April 2001.

9. Port, R.F., Gelder, T. van (eds.) (1995). Mind as Motion: Explorations in the Dynamics of
Cognition. MIT Press, Cambridge, Mass.

10. Vliet, H., van. Software Engineering: Principles and Practice. John Wiley & Sons, Ltd,
2000.

11. Zhou, C., Hoare, C.A.R., and Ravn, A.P. A Calculus of Durations, Information Processing
Letter, 40, 5, pp. 269-276, 1991.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

