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Abstract. This paper presents the language and software environment 
LEADSTO that has been developed to model and simulate the dynamics of 
Multi-Agent Systems (MAS) in terms of both qualitative and quantitative con-
cepts. The LEADSTO language is a declarative order-sorted temporal language, 
extended with quantitative means. Dynamics of MAS can be modelled by 
specifying the direct temporal dependencies between state properties in succes-
sive states. Based on the LEADSTO language, a software environment was de-
veloped that performs simulations of LEADSTO specifications, generates simu-
lation traces for further analysis, and constructs visual representations of traces. 
The approach proved its value in a number of projects within different domains 
of MAS research. 

1   Introduction 

Two important phases in the development of Multi-Agent Systems are the Design 
phase and the Implementation phase. In principle, the result of the Design phase is a 
high-level description (a model) of the system to be developed which, when encoded 
in some programming language, solves a particular problem. To this end, the problem 
is decomposed into modules, of which the functions and interfaces are specified in 
detail [10]. Then, the result of the Design phase, the (technical) specification, can 
serve as a starting point for the Implementation phase. However, an important prob-
lem is the validation of this specification: can it be proven that the specification shows 
the expected behaviour (e.g. as described by requirements) before it is actually im-
plemented? Especially when the specification is given in terms of abstract high-level 
concepts this is a non-trivial task. 

To contribute to the validation of Multi-Agent System specifications, this paper in-
troduces the language and software environment LEADSTO. LEADSTO can be used 
to model the dynamics of systems to be designed, on the basis of highly abstract proc-
ess descriptions. If those dynamics are modelled correctly, the LEADSTO software 
environment can use them for simulation of the desired behaviour of the system. Al-
though such simulations are no formal proof, they can contribute to an informal vali-
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dation of the specification: by performing a number of simulations, it can be tested 
whether the behaviour of the specification is satisfactory. Therefore, LEADSTO may 
be an important tool to bridge the gap between the Design and the Implementation 
phase. 

Generally, in simulations various formats are used to specify basic mechanisms or 
causal relations within a process, see e.g., [1], [5], [9]. Depending on the domain of 
application such basic mechanisms need to be formulated quantitatively or qualita-
tively. Usually, within a given application explicit boundaries can be given in which 
the mechanisms take effect. For example, “from the time of planting an avocado pit, it 
takes 4 to 6 weeks for a shoot to appear”.  

As mentioned above, in order to simulate a system to be designed, it is important to 
model its dynamics. When considering current approaches to modelling dynamics, the 
following two classes can be identified: logic-oriented modelling approaches, and 
mathematical modelling approaches, usually based on difference or differential equa-
tions. Logic-oriented approaches are good for expressing qualitative relations, but less 
suitable for working with quantitative relationships. Mathematical modelling ap-
proaches (e.g., Dynamical Systems Theory [9]), are good for the quantitative rela-
tions, but expressing conceptual, qualitative relationships is very difficult. In this 
article, the LEADSTO language (and software environment) is proposed as a lan-
guage combining the specification of qualitative and quantitative relations.  

In Section 2, the LEADSTO language is introduced. Section 3 provides examples 
from existing case studies in which LEADSTO has been applied. Section 4 describes 
the tools that support the LEADSTO modelling environment in detail. In particular, 
the LEADSTO Property Editor and the LEADSTO Simulation Tool are discussed. 
Section 5 compares the approach to related modelling approaches, and Section 6 is a 
conclusion. 

2   Modelling Dynamics in LEADSTO 

Dynamics can be modelled in different forms. Based on the area within Mathematics 
called calculus, the Dynamical Systems Theory (DST) [9] advocates to model dynam-
ics by continuous state variables and changes of their values over time, which is also 
assumed continuous. In particular, systems of differential or difference equations are 
used. This may work well in applications where the world states can be modelled in a 
quantitative manner by real-valued state variables and the world’s dynamics shows 
continuous changes in these state variables that can be modelled by mathematical 
relationships between real-valued variables.   

Not for all applications dynamics can be modelled in a quantitative manner as re-
quired for DST. Sometimes qualitative changes form an essential aspect of the dy-
namics of a process. For example, to model the dynamics of reasoning processes in 
Intelligent Agents usually a quantitative approach will not work. In such processes 
states are characterised by qualitative state properties, and changes by transitions 
between such states. For such applications often qualitative, discrete modelling ap-
proaches are advocated, such as variants of modal temporal logic; e.g., [6]. However, 
using such non-quantitative methods, the more precise timing relations are lost too.  
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For the approach used in this paper, it was decided to consider time as continuous, 
described by real values, but to allow both quantitative and qualitative state proper-
ties. The approach subsumes approaches based on simulation of differential or differ-
ence equations, and discrete qualitative modelling approaches, but also combines 
them. For example, it is possible to model the exact (real-valued) time interval for 
which some qualitative property holds. Moreover, the relationships between states 
over time are described by either logical or mathematical means, or a combination 
thereof. This is explained below in more detail. 

Dynamics is considered as evolution of states over time. The notion of state as 
used here is characterised on the basis of an ontology defining a set of properties that 
do or do not hold at a certain point in time. For a given (order-sorted predicate logic) 
ontology Ont, the propositional language signature consisting of all state ground atoms 
(or atomic state properties) based on Ont is denoted by APROP(Ont). The state properties 
based on a certain ontology Ont are formalised by the propositions that can be made 
(using conjunction, negation, disjunction, implication) from the ground atoms. A state 
S is an indication of which atomic state properties are true and which are false, i.e., a 
mapping S: APROP(Ont) → {true, false}.  

To specify simulation models a temporal language has been developed. This lan-
guage (the LEADSTO language) enables one to model direct temporal dependencies 
between two state properties in successive states, also called dynamic properties. A 
specification of dynamic properties in LEADSTO format has as advantages that it is 
executable and that it can often easily be depicted graphically. The format is defined 
as follows. Let α and β be state properties of the form ‘conjunction of atoms or nega-
tions of atoms’, and e, f, g, h non-negative real numbers. In the LEADSTO language 
the notation α →→e, f, g, h β (also see Figure 1), means: 
 

If state property α holds for a certain time interval with duration g, then  after some delay 
(between e and f) state property β will hold for a certain time interval of length h. 

 

α
β

t1

e

g h

t2

time

f
t0  

Fig. 1. The timing relationships 

An example dynamic property that uses the LEADSTO format defined above is the 
following: “observes(agent_A, food_present) →→ 2, 3, 1, 1.5  belief(agent_A, food_present)”. In-
formally, this example expresses the fact that, if agent A observes that food is present 
during 1 time unit, then after a delay between 2 and 3 time units, agent A will believe 
that food is present during 1.5 time units. In addition, within the LEADSTO language 
it is possible to use sorts, variables over sorts, real numbers, and mathematical opera-
tions, such as in “has_value(x, v) →→ e, f, g, h  has_value(x, v*0.25)”. 
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Next, a trace or trajectory γ over a state ontology Ont is a time-indexed sequence of 
states over Ont (where the time frame is formalised by the real numbers). A 
LEADSTO expression α →→e, f, g, h β, holds for a trace γ if: 
 

∀t1: [∀t  [t1–g ≤ t < t1  ⇒  α  holds in γ at time t ]  ⇒  ∃d  [e ≤ d ≤ f  &   ∀t'  [t1+d ≤  t' <  t1+d+h  ⇒   β holds in γ 
at time t' ] 
 

An important use of the LEADSTO language is as a specification language for 
simulation models. As indicated above, on the one hand LEADSTO expressions can 
be considered as logical expressions with a declarative, temporal semantics, showing 
what it means that they hold in a given trace. On the other hand they can be used to 
specify basic mechanisms of a process and to generate traces, similar to Executable 
Temporal Logic (cf. [1]).  

Finally, the LEADSTO format can be graphically depicted in a causal graph-like 
format, such as in Figure 2. Here, state properties are indicated by circles and 
LEADSTO relationships by arrows. An arc denotes a conjunction between state prop-
erties. Agents are indicated by dotted boxes. Circles that are depicted within an agent 
denote its internal (mental) state properties. Circles that are depicted on the left or 
right border of an agent denote, respectively, its input and output state properties, and 
circles that are depicted outside an agent denote state properties of the external world. 
Notice that this simple form leaves out the timing parameters e, f, g, h. A more detailed 
form can be obtained by placing the timing parameters in the picture as labels for the 
arrows. For more details about the LEADSTO language, see Section 4. 

 
 
 
  
 
 
 
 
 
 

Fig. 2. Example of a graphical representation of two LEADSTO properties 

3   Applications 

The LEADSTO environment has been applied in a number of research projects in 
different domains. In this section, an example LEADSTO specification is given for a 
specific domain: a Multi-Agent System for ant behaviour, adopted from [3]. The 
world in which the ants live is described by a labeled graph as depicted in Figure 3. 
Locations are indicated by A, B,…, and edges by E1, E2,… The ants move from 
location to location via edges; while passing an edge, pheromones are dropped. The 
objective of the ants is to find food and bring this back to their nest. In this example 
there is only one nest (at location A) and one food source (at location F). 

 
 

food_present 

observes(agent_A, 
food_present) 

no_enemies 

observes(agent_A, 
no_enemies) 

performs(agent_A, eat_food) 

to_be_performed 
(agent_A, eat_food) 

belief(agent_A, no_enemies) 

belief(agent_A, food_present) 
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Fig. 3. An ants world 

In [3], the dynamics of this system are formalised in LEADSTO, and some simula-
tions are shown for different situations. A number of LEADSTO expressions that have 
been used for the simulation are shown in Box 1. For the complete specification, see [3]. 

In Figure 4 an example of a resulting simulation trace is shown. The upper part of 
the figure shows qualitative information; the lower part shows quantitative informa-
tion. Time is on the horizontal axis. In the upper part, the state properties are on the 
vertical axis. Here, a dark box on top of the line indicates that the property is true 
during that time period, and a lighter box below the line indicates that the property is 
false. For example, the state property to_be_performed(ant2, pick_up_food) is true from 
time point 20 to 21. Because of space limitations, only a selection of important state 
properties was depicted. In the lower part, different instantiations of state property 
pheromones_at_E1(X) are shown, with different (real) values for X. For example, from 
time point 1 to 7 the amount of pheromones on E1 is 0.0. 
 

 

 
Box 1. Example LEADSTO specification 

LP5 (Selection of Edge) 
This property models (part of) the edge selection mechanism of the ants. It expresses that, when an 

ant a observes that it is at location l coming from edge e0, and there are two other edges connected to 

that location, then the ant goes to the edge with the highest amount of pheromones. Formalisation: 
observes(a, is_at_location_from(l, e0)) and neighbours(l, 3) and connected_to_via(l, l1, e1) and observes(a, phero-

mones_at(e1, i1)) and connected_to_via(l, l2, e2) and observes(a, pheromones_at(e2, i2)) and e0 ≠ e1 and e0 ≠ e2 and e1 

≠ e2 and i1 > i2  →→0,0,1,1  to_be_performed(a, go_to_edge_from_to(e1, l1)) 
 

LP9 (Dropping of Pheromones) 
This property expresses that, if an ant observes that it is at an edge e from a location l to a location l1, 

then it will drop pheromones at this edge e. Formalisation: 

observes(a, is_at_edge_from_to(e, l, l1))   →→0,0,1,1  to_be_performed(a, drop_pheromones_at_edge_from(e, l)) 
 

LP13 (Increment of Pheromones) 
This property models (part of) the increment of the number of pheromones at an edge as a result of 

ants dropping pheromones. It expresses that, if an ant drops pheromones at edge e, and no other ants 

drop pheromones at this edge, then the new number of pheromones at e becomes i*decay+incr. Here, 

i is the old number of pheromones, decay is the decay factor, and incr is the amount of pheromones 

dropped. Formalisation: 
to_be_performed(a1, drop_pheromones_at_edge_from(e, l1)) and ∀l2 not to_be_performed(a2, 

drop_pheromones_at_edge_from(e, l2)) and ∀l3 not to_be_performed(a3, drop_pheromones_at_edge_from(e, l3)) and a1 

≠ a2 and a1 ≠ a3 and a2 ≠ a3 and pheromones_at(e, i)  →→0,0,1,1  pheromones_at(e, i*decay+incr) 
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Although this picture provides a very simple example (involving only three ants), it 
demonstrates the power of LEADSTO to combine (real-valued) quantitative concepts 
with (conceptual) qualitative concepts.  

 

 

Fig. 4. Example simulation trace 

Thus, Figure 4 shows an easy to read (important for the communication with the 
domain expert), compact, and executable representation of an informal model for ant 
behaviour. Moreover, the example demonstrates the power of conceptual modelling 
based on highly abstract process descriptions. In less than 3 pages of code, the global 
dynamics of ant behaviour are so well defined that the specification actually runs. The 
specification took only a couple of days to construct, making the LEADSTO approach 
valuable for proof-of-concept simulations, thus important for Agent-Oriented Soft-
ware Engineering. 

Finally, note that the ant example does not fully exploit the power of to use real-
valued time parameters (in fact, most of the rules use the values 0,0,1,1 for the pa-
rameters e, f, g, h, see Box 1). Nevertheless, in a number of other domains the use of 
real-valued time parameters turned out to be beneficial, since it allows for more real-
istic simulations of dynamic processes. An example domain where this was the case, 
is the domain of adaptive agents based on classical conditioning, see [2]. 

4   Tools 

In this section, the LEADSTO software environment is presented. Basically, this 
environment consists of two programs: the Property Editor (a graphical editor for 
constructing and editing LEADSTO specifications) and the Simulation Tool (for per-
forming simulations of LEADSTO specifications, generating data-files containing 
traces for further analysis, and showing traces). Apart from the LEADSTO language 
constructs introduced in Section 2 the LEADSTO software has a number of other 
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language constructs. Section 4.1 discusses some details. Next, Section 4.2 introduces 
the Property Editor and Section 4.3 deals with the Simulation Tool. Section 4.4 de-
scribes the algorithm used to generate simulations. Finally, Section 4.5 provides some 
implementation details and discusses possible improvements for the future. 

4.1   Details of the LEADSTO Language 

There are various representations of LEADSTO specifications. A graphical represen-
tation is shown in Section 4.2 when discussing the Editor. In this section all language 
constructs are discussed using a formal representation, based on the way specifica-
tions are stored.  

 

Variables. The language uses typed variables in various constructs. A variable is 
represented as <Var-Name>:<Sort>. 

 

Sorts. Sorts may be defined as a set of instances that may be specified: sortdef(<Sort-
Name>, [<Term>,…]). There are also built-in sorts such as integer, real, and ranges of 
integers represented as for example between(2,10). 

 

Atoms. Atoms may be terms built up from names with argument lists where each 
argument must be a term or a variable, for example: belief(x:AGENT, food_present). 

 

LEADSTO rules. LEADSTO rules are introduced in Section 2. They are represented 
as: 

leadsto([<Vars>,] <Antecedent-Formula>, <Consequent-Formula>,  <Delay>, where 

<Delay> := efgh(<E-Range>,<F-Range>, <G-Range>,<H-Range>))
1
 

<Vars>  := “[“ <Variable>,... “]” 

For example, α →→0, 0, 1, 1 β is represented as leadsto(alfa, beta, efgh(0,0,1,1)). Variables 
occurring in LEADSTO rules must be explicitly declared as <Variable> entries. 

Formulae. LEADSTO rules contain formulae. The current implementation allows 
conjunctions and universal quantification over typed variables. Some variables are 
global, encompassing the whole rule. Other - local - variables are part of universal 
quantification of some conjunction. The first kind of variables may be of infinite 
types. Currently, local variables must be of finite types.  Some of these restrictions – 
such as on not allowing disjunction – will be removed in a next version. This will 
have no effect on the performance of the algorithm discussed in Section 4.4, but will 
make the details of the algorithm more complex. Other restrictions with respect to 
variables of infinite type will remain.  

 

Time/Range. Time and Range values occurring in LEADSTO rules and interval con-
structs may be any number or expression evaluating to a number. 

 

Constants. Constants may be defined using the following construct: constant(<Name>, 
<Value>). A constant(C1, a(1)) entry in a specification will lead to C1 being substituted 
by a(1) everywhere in the specification. 

 

Intervals. During simulation, some atom values will be derived from LEADSTO 
rules. Others are not defined by rules but represent constant values of atoms over a 
certain time range. They are expressed as: interval([<Vars>,]<Range>,<LiteralConjunction>). 
                                                           
1 The reason for grouping the delay is to make it easier to use delay constants. 
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Periodically reoccurring constant values are represented as: peri-
odic([<Vars>,]<Range>,<Period>,<LiteralConjunction>), where 

 

<Range> := range(<Start-Time>,<End-Time>) 
<Vars>  := “[“ <Variable>,... “]” 
<Period> : an expression or constant or variable representing a number.  
<LiteralConjunction> := <Literal> { and <Literal> }* 
<Literal> := <Atom> | not <Atom> 
 

For example, an entry interval([X:between(1,2)], range(10,20), a(X)) makes a(1) and a(2) 
true in the time range (10,20). Likewise, an entry periodic(P, range(0,1), 10) makes P 
true in time ranges (0,1), (10,11), (20,21), and so on. 

 

Simulation Range. The time range over which the simulation must be run is ex-
pressed by means of the constructs start_time(<Time>) and end_time(<Time>). 

 

Visualisation of Traces. The construct display(<Tag-Name>, <Property>) is used to spec-
ify details of how to display the traces. The <Tag-Name> argument makes it possible to 
define multiple views of a trace. The active view may be specified from within the 
User Interface of the Simulation Tool. A number of properties may be specified, for 
showing or hiding certain atoms, for sorting atoms, for grouping atoms into a graph, 
and so on.  

4.2   Property Editor 

The Property Editor provides a user-friendly way of building and editing LEADSTO 
specifications. It was designed in particular for laymen and students. The tool has 
been used successfully by students with no computer science background and by 
users with little computer experience. By means of graphical manipulation and filling 
 

 

Fig. 5. The LEADSTO Property Editor 
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in of forms a LEADSTO specification may be constructed. The end result is a saved 
LEADSTO specification file, containing entries discussed in section 4.1. Figure 5 
gives an example of how LEADSTO specifications are presented and may be edited 
with the Property Editor. This screenshot corresponds to (part of) the specification 
given in Box 1. 

4.3   Simulation Tool 

Figure 6 gives an overview of the Simulation Tool and its interaction with the 
LEADSTO Property Editor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Simulation Tool Architecture 
 
The bold rectangular borders define the separate tools. The lines with arrows repre-
sent data transport; the dashed arrows represent control. The Property Editor is used 
to generate and store LEADSTO specification files. The Simulation Tool loads these 
specification files. The overall control of the Simulation Tool is handled by the Con-
trol-GUI component. The Simulation Tool can perform the following activities: 

 

• Loading LEADSTO specifications, performing a simulation and displaying the 
result. 

• Loading and displaying existing traces (without performing simulation). 
• Adjusting the visualisation of traces. 
 

Loading and simulating a LEADSTO specification is handled in four steps: 
 

1. The Specification Loader loads the specification. 
2. The Intermediate Code Generator initialises the trace situation with values de-

fined by interval and periodic entries in the specification. The LEADSTO rules 
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are preprocessed: constants are substituted, universal quantifications are ex-
panded and the rules are partially compiled into Prolog calls. 

3. The actual simulation is performed by the Runtime System. This is the part that 
contains the algorithm, discussed in the next section. 

4. At the end of a simulation the result is stored internally by the Internal Trace 
Storage component. The result can be saved as a trace file containing the evo-
lution over time of truth values of all atoms occurring in the simulation, and 
will be visualised by the Trace Visualisation GUI. In principle, traces are 
three-valued, using the truth values true, false, and unknown. Saved trace files 
can be inspected later by the simulation tool and can be used by other tools, 
e.g., for automated analysis. 

 

Note that visualisation of traces is integrated into the Simulation Tool through the 
Trace Visualisation GUI component. It is possible to select what atoms must be 
shown and in what order (sorting) etc. Figure 4 is an example of the visualisation of 
the result of a simulation.  

4.4   Simulation Engine Algorithm 

In this section a sketch of the simulation algorithm is given. The core of the semantics 
is determined by the LEADSTO rules, for example leadsto(alpha,beta, efgh(e, f, g, h)) or 
(in the notation of Section 2)  α →→e, f, g, h β. The state properties α, β are internally 
normalised. Currently, only state properties that can be simplified to conjunctions of 
literals are allowed.  

 

Restrictions on delays 
The parameters g and h are time intervals, they must be >= 0. The algorithm allows 
only causal rules, e,f >= 0. Allowing e,f < 0 would lead to non-causal behaviour (any 
trace situation could have an effect arbitrarily in the past) and an awkward simulation 
algorithm. The causal nature of the semantics of LEADSTO rules results in a straight-
forward algorithm: at each time point, a bound part of the past of the trace (the maxi-
mum of all g values of all rules) determines the values of a bound range of the future 
trace (the maximum of f + h over all LEADSTO rules). 

 

Outline of the algorithm 
First all interval and periodic entries are handled by setting the ranges of atoms accord-
ing to their definition. Next, for the algorithm a time variable HandledTime is intro-
duced: all LEADSTO rules with antecedent range up to HandledTime have fired. The 
idea is to propagate HandledTime until HandledTime >= EndTime2 via the following steps: 

 

1. At a certain HandledTime, a value for NextTime is calculated. This will be the 
first time in the future after HandledTime that firing of a LEADSTO rule with its 
g-interval (see Figure 1) extending past HandledTime may have effect in the 
form of some consequent atom set. The time increment will be at least as big as 
the minimum of e + h over all LEADSTO rules. 

2. An (optional) Closed World Assumption is performed for all selected atoms in 
the range (HandledTime, NextTime), i.e., all unknown atoms in this range are made 
false. 

                                                           
2 EndTime is the time up to which the simulation should be run. 
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3. All LEADSTO rules are applied for which the range of the antecedent ends be-
fore or overlaps with NextTime. 

4. Set HandledTime := NextTime 
5. Continue with step 1 until HandledTime >= EndTime 

4.5   Implementation Details 

The complexity of the current algorithm is proportional to the number of LEADSTO 
rules in the specification, to the number of incremental time steps of the algorithm 
(which is at most equal to the length of the simulation divided by the minimum of e + 
h over all LEADSTO rules) and (at most) to the number of matching antecedent at-
oms per LEADSTO rule (limited by the number of atoms set during the simulation). 
A number of optimizations already improve the performance, such as only consider-
ing antecedent atoms that have matching values in the  (HandledTime, NextTime) time 
range and not considering LEADSTO rules that have been tested to not fire until 
some time in the future. 

The software was written in SWI-Prolog/XPCE, and consists of approximately 
20000 lines of code.  The approach for the design and implementation has been to 
first focus on a complete implementation that is easily adaptable, with acceptable 
performance for the current users. For an impression of the performance: the simula-
tion of Section 3 took two seconds on a regular Personal Computer. More complex 
LEADSTO simulations have been created that take about half an hour to run. For 
example: one simulation with 170 LEADSTO rules, 2000 time steps, with 15000 
atoms set, took 45 minutes. 

There is room for further performance improvement of the algorithm. One possi-
ble improvement is to increase the time increment NextTime – HandledTime introduced 
in the algorithm above. Global analysis of dependency of LEADSTO rules should 
improve the performance, for instance by trying to eliminate simple rules with small 
values of their e + h parameters. Furthermore, the LEADSTO language is being ex-
tended with constructs for probabilistic rules, and with constructs for systematically 
generating traces of LEADSTO specifications for a range of parameters.  

5   Related Work 

In the literature, a number of modelling approaches exist that have similarities to the 
approach discussed in this paper. Firstly, there is the family of approaches based on 
differential or difference equations (see, e.g., [9]). In these approaches, to simulate 
processes by mathematical means, difference equations are used, for example, of the 
form: ∆x  =  f(x) ∆t   or    x(t + ∆t) =  x(t) + f(x(t)) ∆t. This can be modelled in the LEADSTO 
language as follows (where d is ∆t): has_value(x, v)  →→d, d, d, d  has_value(x, v+f(v)*d). 
This shows how the LEADSTO modelling language subsumes modelling approaches 
based on difference equations. In addition to those approaches the LEADSTO lan-
guage allows to express qualitative and logical aspects. 

Another modelling approach, Executable Temporal Logic [1], is based on temporal 
logic formulae of the form ϕ & χ ⇒ ψ, where ϕ is a past formula, χ a present formula 
and ψ a future formula. In comparison to this format, the LEADSTO format is more 
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expressive in the sense that it allows order-sorted logic for state properties, and allows 
one to express quantitative aspects. Moreover, the explicitly expressed timing pa-
rameters go beyond Executable Temporal Logic. On the other hand, within Executa-
ble Temporal Logic it is allowed to refer to different past states at different points in 
time, and thus to model more complex relationships over time. For the LEADSTO 
language the choice has been made to model only the basic mechanisms of a process 
(e.g., the direct causal relations), like in modelling approaches based on difference 
equations, and not to model the more complex mechanisms.  

The Duration Calculus [11] is a modal logic for describing and reasoning about 
the real-time behaviour of dynamic systems, where states change over time and are 
represented by functions from time (reals) to the Boolean values (0 and 1). It is an 
extension of Interval Temporal Logic [7], but with continuous time, and uses inte-
grated durations of states as interval temporal variables. Assuming finite variability of 
state functions (i.e., between any two time points only a finite number of state 
changes occurs), the axioms and rules of Duration Calculus constitute a complete 
logic (relative to Interval Temporal Logic). A number of interesting tools have been 
created around (subsets of) Duration Calculus, see, e.g., [8] for information on model 
checking duration calculus formulae. Duration Calculus itself is not directly used for 
creating executable models, but environments for executable code exist (e.g., PLC 
automata, see [4]) for which a semantics is given in Duration Calculus. 

Another family of modelling approaches based on causal relations is the class of 
qualitative reasoning techniques (see, e.g., [5]). The main idea of these approaches is 
to represent quantitative knowledge in terms of abstract, qualitative concepts. Like the 
LEADSTO language, qualitative reasoning can be used to perform simulation. A 
difference with LEADSTO is that it is a purely qualitative approach, and that it is less 
expressive with respect to temporal and quantitative aspects. 

6   Conclusion 

This article presents the language and software environment LEADSTO that has been 
developed to model and simulate the dynamics of Multi-Agent Systems on the basis 
of highly abstract process descriptions. If those dynamics are modelled correctly, the 
LEADSTO software environment can use them for simulation of the desired behav-
iour of the system. Although such simulations are no formal proof, they can contrib-
ute to an informal validation of the specification: by performing a number of simula-
tions, it can be tested whether the behaviour of the specification is satisfactory. There-
fore, LEADSTO may be an important tool to bridge the gap between the Design and 
the Implementation phase. 

Within LEADSTO, dynamics can be modelled in terms of both qualitative and 
quantitative concepts. It is, for example, possible to model differential and difference 
equations, and to combine those with discrete qualitative modelling approaches. Ex-
isting languages are either not accompanied by a software environment that allows 
simulation of the model, or do not allow the combination of both qualitative and 
quantitative concepts.  

The language LEADSTO is a declarative order-sorted temporal language extended 
with quantitative notions (like integer, and real). Time is considered linear, continu-
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ous, described by real values. Dynamics can be modelled in LEADSTO as evolution 
of states over time, i.e., by modelling the direct temporal dependencies between state 
properties in successive states. The use of durations in these temporal properties fa-
cilitates the modelling of such temporal dependencies. In principle, accurately model-
ling the dynamics of processes may require the use of a dense notion of time, instead 
of the more practiced variants of discrete time. The problem in a dense time frame of 
having an infinite number of time points between any two time points is tackled in 
LEADSTO by the assumption of “Finite Variability” (see Section 5 and, e.g., [11]). 
Furthermore, main advantages of the LEADSTO language are that it is executable and 
allows for graphical representation.   

The software environment LEADSTO was developed especially for the language. 
It features a dedicated Property Editor that proved its value for laymen, students and 
expert users. The core component is the Simulation Tool that performs simulations of 
LEADSTO specifications, generates simulation traces for further analysis, and visual-
ises the traces. 

The approach proved its value in a number of research projects in different do-
mains. It has been used to analyse and simulate behavioural dynamics of agents in 
cognitive science (e.g., human reasoning, creation of consciousness, diagnosis of 
eating disorders), biology (e.g., cell decision processes, the dynamics of the heart), 
social science (e.g., organisation dynamics, incident management), and artificial intel-
ligence (e.g., design processes, ant colony behaviour). LEADSTO is so rich that it can 
be used to model phenomena from diverse perspectives. It has, for example, been 
used to model cognitive processes from a psychological/BDI perspective and from a 
physical/neurological perspective. For more publications about these applications, the 
reader is referred to the authors’ homepages. 
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